
Чему равен cos(x-3П/2)? И как решить уравнение: cos^2(x-3П/2)=1+cos^2x. Помогите пожалуйста с
уравнением!!! оно из кдр за январь 2008 года 10 класса

Ответы на вопрос

cos(x - 3π/2) = cos(-(3π/2 - x)) = cos(3π/2 - x) = -sin x;
cos^2 (x - 3π/2) = 1 + cos^2 x,
(-sin x)^2 = 1 + cos^2 x,
sin^2 x - cos^2 x = 1,
cos^2 x - sin^2 x = -1,
cos 2x = -1,
2x = π + 2πk, k∈Z,
x = π/2 + πk, k∈Z.



Cosine Function and Equation Solving
The value of cos(x-3π/2) can be determined using the trigonometric identity:
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
Substituting a = x and b = 3π/2, we get:
cos(x-3π/2) = cos(x)cos(3π/2) + sin(x)sin(3π/2)
Using the values of cos(3π/2) and sin(3π/2), we can calculate the result.
To solve the equation cos^2(x-3π/2) = 1 + cos^2(x), we can use trigonometric identities to simplify and solve for x. Let's break it down step by step.
Solving the Equation
First, we can use the identity cos^2(x) + sin^2(x) = 1 to simplify the equation:
cos^2(x-3π/2) = 1 + cos^2(x)
Using the identity cos(a - b) = cos(a)cos(b) + sin(a)sin(b), we can express cos^2(x-3π/2) in terms of cos(x) and sin(x).
Applying Trigonometric Identities
We have: cos^2(x-3π/2) = cos^2(x)cos^2(3π/2) + sin^2(x)sin^2(3π/2)
Substituting the values of cos(3π/2) and sin(3π/2), we can simplify the equation further.
Solving for x
After simplifying, we can solve for x by using algebraic manipulations and trigonometric identities. The goal is to isolate x on one side of the equation.
Once we have the simplified equation, we can proceed with solving for x by applying appropriate trigonometric identities and algebraic techniques.
Let's work through the steps to solve the equation and find the value of x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili