
Log3(1+log1/3x)=1 помогите пж


Ответы на вопрос

Log3(1+log1/3x)=1
x > 0
1 + log₁/₃ x = 3¹
log₁/₃ x = 3 - 1
log₁/₃ x = 2
x = (1/3)²
x = 1/9



Solving the Equation Log3(1+log1/3x)=1
To solve the equation Log3(1+log1/3x)=1, we can follow these steps:
1. First, we can rewrite the equation using logarithmic properties. 2. Then, we can solve for the variable x.
Let's proceed with the solution.
Step 1: Rewrite the Equation
We can rewrite the given equation using logarithmic properties. The equation Log3(1+log1/3x)=1 can be rewritten as:
1 + log(1/3x) = 3
Step 2: Solve for x
Now, we can solve for the variable x by isolating it in the equation.
log(1/3x) = 3 - 1
log(1/3x) = 2
To solve for x, we need to exponentiate both sides of the equation. Since the base of the logarithm is 1/3, we will use 1/3 as the base for exponentiation.
1/3^(log(1/3x)) = 1/3^2
1/3^(log(1/3x)) = 1/9
This simplifies to:
1/3x = 1/9
Now, we can solve for x:
x = (1/9) / (1/3)
x = (1/9) * (3/1)
x = 1/3
So, the solution to the equation Log3(1+log1/3x)=1 is x = 1/3.
I hope this helps! If you have any further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili