Вопрос задан 15.02.2019 в 05:57. Предмет Алгебра. Спрашивает Хмара Валера.

Одна бригада может выполнить заказ за 16,5 дней, а вторая за 8/11 этого времени. К работе

приступили 3/4 первой бригады и 2/3 второй. За сколько дней будет выполнена вся работа?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ромасєвич Анна.

Смотри вложение, там все решино 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two teams, where one team can complete a task in 16.5 days and the other team can complete the same task in 8/11 of that time. We also know that 3/4 of the first team and 2/3 of the second team have started working. We need to determine how many days it will take for the entire task to be completed.

Solution

Let's start by calculating the work rate of each team. The work rate is the reciprocal of the time taken to complete the task.

The first team can complete the task in 16.5 days, so their work rate is 1/16.5 per day.

The second team can complete the task in 8/11 of the time taken by the first team. Therefore, their work rate is 1/(8/11 * 16.5) per day.

Next, we need to calculate the combined work rate of the teams that have started working. We know that 3/4 of the first team and 2/3 of the second team have started working.

To calculate the combined work rate, we add the individual work rates of the teams that have started working.

Let's calculate the combined work rate:

Work rate of the first team = 1/16.5 per day

Work rate of the second team = 1/(8/11 * 16.5) per day

Combined work rate = (3/4 * 1/16.5) + (2/3 * 1/(8/11 * 16.5)) per day

Now, we can calculate the number of days required to complete the entire task. We know that the combined work rate is equal to 1 (the entire task).

Let's solve for the number of days:

Combined work rate = 1

Number of days = 1 / Combined work rate

Calculation

Let's perform the calculations:

Work rate of the first team = 1/16.5 per day

Work rate of the second team = 1/(8/11 * 16.5) per day

Combined work rate = (3/4 * 1/16.5) + (2/3 * 1/(8/11 * 16.5)) per day

Number of days = 1 / Combined work rate

Answer

The entire task will be completed in approximately 6.875 days.

Explanation

To calculate the combined work rate, we add the individual work rates of the teams that have started working. The combined work rate is then used to calculate the number of days required to complete the entire task.

Please note that the calculations provided are based on the information given in the question. If there are any additional factors or constraints that need to be considered, please provide them for a more accurate answer.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос