
Два автомобиля вышли одновременно из точки А до точки В расстояние между которыми 930 км, скорость
первого на 31 км/ч больше Чем у второго , и он прибыл в пункт В на 5 часов раньше Найдите скорость первого автомобиля

Ответы на вопрос

х+31 - скорость второго
930/х - время в пути первого автомобиля
930/(х+31) - время в пути второго автомобиля
Получим уравнение для разницы во времени:
Второй корень в квадратном уравнении является посторонним (т.к. он отрицательный и его значение нас не устраивает)
Ответ: скорость первого автомобиля примерно 61 км/ч



Problem Analysis
We are given that two cars start simultaneously from point A and travel to point B, which is a distance of 930 km away. The speed of the first car is 31 km/h greater than the speed of the second car. The first car arrives at point B 5 hours earlier than the second car. We need to find the speed of the first car.Solution
Let's assume the speed of the second car is x km/h. Since the speed of the first car is 31 km/h greater, the speed of the first car can be represented as x + 31 km/h.We know that the time taken by the first car to travel from A to B is 5 hours less than the time taken by the second car. Let's represent the time taken by the second car as t hours. Therefore, the time taken by the first car is t - 5 hours.
We can use the formula speed = distance / time to calculate the speeds of the two cars.
For the second car: x = 930 / t km/h
For the first car: x + 31 = 930 / (t - 5) km/h
Now, we can solve these two equations to find the value of x, which represents the speed of the second car.
Calculation
Let's solve the equations:Equation 1: x = 930 / t
Equation 2: x + 31 = 930 / (t - 5)
We can substitute Equation 1 into Equation 2:
930 / t + 31 = 930 / (t - 5)
To simplify the equation, we can cross-multiply:
930(t - 5) + 31t = 930t
Expanding and simplifying:
930t - 4650 + 31t = 930t
Combining like terms:
961t - 4650 = 930t
Moving the terms to one side:
961t - 930t = 4650
Simplifying:
31t = 4650
Dividing both sides by 31:
t = 150
Now that we have the value of t, we can substitute it back into Equation 1 to find the speed of the second car:
x = 930 / t = 930 / 150 = 6.2 km/h
Therefore, the speed of the second car is 6.2 km/h.
Since the speed of the first car is 31 km/h greater, the speed of the first car is:
x + 31 = 6.2 + 31 = 37.2 km/h
Therefore, the speed of the first car is 37.2 km/h.
Answer
The speed of the first car is 37.2 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili