Вопрос задан 05.02.2019 в 22:44. Предмет Алгебра. Спрашивает Голяк Ваня.

Докажи,что среди восьми различных натуральных чисел,найдутся хотя бы два числа,разность которых

делится на 7
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мещерякова Софья.

Очевидно, что равных чисел не должно быть (иначе их разность - 0, делится на 7). Упорядочим числа в таком порядке: a1<a2<...<a8

Рассмотрим разности a8-a1, a8-a2, a8-a3, ... a8-a7 (всего 7 разностей). Так как разностей таких 7, то 2 из них дают одинаковый остаток при делении на 7. Пусть например это разности 

a8-a1=7k+m

и a8-a2=7l+m

Тогда их разность: a8-a1-a8+a2=a2-a1=7(k-l) делится на 7, что и требовалось доказать

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос