
Вопрос задан 05.02.2019 в 22:44.
Предмет Алгебра.
Спрашивает Голяк Ваня.
Докажи,что среди восьми различных натуральных чисел,найдутся хотя бы два числа,разность которых
делится на 7

Ответы на вопрос

Отвечает Мещерякова Софья.
Очевидно, что равных чисел не должно быть (иначе их разность - 0, делится на 7). Упорядочим числа в таком порядке: a1<a2<...<a8
Рассмотрим разности a8-a1, a8-a2, a8-a3, ... a8-a7 (всего 7 разностей). Так как разностей таких 7, то 2 из них дают одинаковый остаток при делении на 7. Пусть например это разности
a8-a1=7k+m
и a8-a2=7l+m
Тогда их разность: a8-a1-a8+a2=a2-a1=7(k-l) делится на 7, что и требовалось доказать


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili