Вопрос задан 25.04.2018 в 19:32. Предмет Алгебра. Спрашивает Харькина Ирина.

Выражение 1-tg^2 a / 1+tg^2 a можно преобразовать к виду...

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Лиза.

\frac{1-tg^2 \, \alpha }{1+tg^2 \, \alpha }}=\frac{1 - \frac{\sin^2{ \alpha }}{\cos^2{ \alpha }} }{\frac{1}{\cos^2{ \alpha }}}=\cos^2{ \alpha } \cdot (1 -  \frac{\sin^2{ \alpha }}{\cos^2{ \alpha }})= \\\\ =\cos^2{ \alpha } - \sin^2{ \alpha }=\cos{2 \alpha }

0 0
Отвечает Ким Эрика.

\frac{1-tg^{2}a}{1+tg^{2}a} =(1- \frac{sin^{2}a}{cos^{2}a} ):(1+ \frac{sin^{2}a}{cos^{2}a} )=\frac{cos^{2}a-sin^{2}a}{cos^{2}a} :\frac{sin^{2}a+cos^{2}a}{cos^{2}a} = \\ \frac{cos^{2}a-sin^{2}a}{cos^{2}a} * \frac{cos^{2}a}{sin^{2}a+cos^{2}a} =\frac{cos^{2}a-sin^{2}a}{1} * \frac{1}{1} =cos2a \\

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос