
Вопрос задан 24.04.2018 в 14:21.
Предмет Алгебра.
Спрашивает Бейсен Дария.
Помогите решить неравенство |x-6|+(x-4)*|4-x|<=0с решением


Ответы на вопрос

Отвечает Сплетение Золотое.
Ix-6I=0 x=6
I4-xI=0 x=4
____________4________________6_________________x
рассмотрим три промежутка
1) x≤4
получаем неравенство:
6-x+(x-4)(4-x)≤0
6-x-(x²-4²)≤0
x²+x+10≥0
D<0⇒выражение x²+x+10>0 при всех значениях x≤4
2) 4<x<6
получаем неравенство:
6-x+(x-4)(x-4)≤0
6-x+x²-4²)≤0
x²-x-10≤0
x=
_____+_____-___
_______+___x
учитывая условие 4<x<6 - нет решений
3) x≥6
получаем неравенство:
x-6+(x-4)(4-x)≤0
x-6-(x²-4²)≤0
x²-x-10≥0
x=
_____+_____-___
_________+___x
учитывая условие x≥6, получаем x≥6
Ответ: x∈ (-∞;4] U [6;+∞)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili