
Вопрос задан 04.01.2019 в 06:58.
Предмет Алгебра.
Спрашивает Савчук Дмитро.
Помогите,пожалуйста!На рисунке изображен график производной функции f(x) ,определенной на интервале
(-5;4) .В какой точке отрезка [-4;1] f(x) принимает наибольшое значение? У меня получилось -1. Так ли это? Просто в ответах стоит 1


Ответы на вопрос

Отвечает Золотова Анастасия.
Первое объяснение неверно.
1. шаг находим точки где производная равна 0., это точка х=1
2. значение меняется с положительного на отрицательное,
при переходе через проверяемую точку, следовательно
в точке х=1 функция f(x) имеет максимум.
точка х=3, нас не удовлетворяет, несмотря на выполнение пункта 1.
второе условие достаточности не выполнено.
замечу только в этой точке имеется минимум.
1. шаг находим точки где производная равна 0., это точка х=1
2. значение меняется с положительного на отрицательное,
при переходе через проверяемую точку, следовательно
в точке х=1 функция f(x) имеет максимум.
точка х=3, нас не удовлетворяет, несмотря на выполнение пункта 1.
второе условие достаточности не выполнено.
замечу только в этой точке имеется минимум.



Отвечает Умаров Ноил.
Правильный ответ 1! Производная больше нуля➡️функция возрастает➡️смотрим на промежутке крайнее правое значение, оно равно 1➡️Верный ответ 1


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili