
1).cos x + sin(Pi/2 -x) + cos (Pi + x)=0 2). cos(Pi+x)=cos Pi/6 3). 7cos(x- 3pi/2)+5sin x+1=0 4).
cos2x+cosx=-sin2x

Ответы на вопрос

cosx+cosx-cosx=0
cosx=0
x=π/2+πn,n∈z
2
cos(Pi+x)=cos Pi/6
-cosx=√3/2
cosx=-√3/2
x=+-5π/6+2πn,n∈z
3
7cos(x- 3pi/2)+5sin x+1=0
-7sinx+5sinx=-1
-2sinx=-1
sinx=1/2
x=(-1)^n*π/6+πn,n∈z
4
cos2x+cosx=-sin2x



1) Equation: cos(x) + sin(Pi/2 - x) + cos(Pi + x) = 0
Let's simplify the equation step by step:
First, we know that sin(Pi/2 - x) = cos(x). So, substituting this in the equation, we get:
cos(x) + cos(x) + cos(Pi + x) = 0
Now, we can simplify further by using the trigonometric identity cos(Pi + x) = -cos(x). Substituting this in the equation, we get:
2cos(x) - cos(x) = 0
Simplifying, we have:
cos(x) = 0
To find the values of x that satisfy this equation, we need to determine the solutions for which cos(x) = 0. In the trigonometric unit circle, cos(x) = 0 at specific angles. These angles occur at x = Pi/2 + n * Pi, where n is an integer.
So, the solutions for the equation cos(x) + sin(Pi/2 - x) + cos(Pi + x) = 0 are:
x = Pi/2 + n * Pi, where n is an integer.
2) Equation: cos(Pi + x) = cos(Pi/6)
Again, we can use the trigonometric identity cos(Pi + x) = -cos(x). Substituting this in the equation, we get:
-cos(x) = cos(Pi/6)
To find the values of x that satisfy this equation, we need to determine the solutions for which -cos(x) = cos(Pi/6).
Using the unit circle, we can find the solutions. At x = Pi/6, cos(Pi/6) = sqrt(3)/2. So, the equation becomes:
-cos(x) = sqrt(3)/2
Multiplying both sides by -1, we get:
cos(x) = -sqrt(3)/2
To find the angles where cos(x) = -sqrt(3)/2, we can refer to the unit circle. These angles occur at x = 2Pi/3 + 2n * Pi or x = 4Pi/3 + 2n * Pi, where n is an integer.
So, the solutions for the equation cos(Pi + x) = cos(Pi/6) are:
x = 2Pi/3 + 2n * Pi, or x = 4Pi/3 + 2n * Pi, where n is an integer.
3) Equation: 7cos(x - 3Pi/2) + 5sin(x) + 1 = 0
Let's simplify the equation step by step:
First, we know that cos(x - 3Pi/2) = sin(x). So, substituting this in the equation, we get:
7sin(x) + 5sin(x) + 1 = 0
Simplifying further, we have:
12sin(x) = -1
Dividing both sides by 12, we get:
sin(x) = -1/12
To find the angles where sin(x) = -1/12, we can refer to the unit circle. These angles occur at x = -sin^(-1)(1/12) + 2n * Pi or x = Pi + sin^(-1)(1/12) + 2n * Pi, where n is an integer.
So, the solutions for the equation 7cos(x - 3Pi/2) + 5sin(x) + 1 = 0 are:
x = -sin^(-1)(1/12) + 2n * Pi, or x = Pi + sin^(-1)(1/12) + 2n * Pi, where n is an integer.
4) Equation: cos(2x) + cos(x) = -sin(2x)
To simplify this equation, we can use the trigonometric identity cos(2x) = 2cos^2(x) - 1 and sin(2x) = 2sin(x)cos(x). Substituting these in the equation, we get:
2cos^2(x) - 1 + cos(x) = -2sin(x)cos(x)
Rearranging the terms, we have:
2cos^2(x) + cos(x) + 2sin(x)cos(x) + 1 = 0
Now, let's simplify further:
2cos^2(x) + cos(x) + 2sin(x)cos(x) + 1 = 0
Multiplying each term by 2, we get:
4cos^2(x) + 2cos(x) + 4sin(x)cos(x) + 2 = 0
Rearranging the terms, we have:
4cos^2(x) + 4sin(x)cos(x) + 2cos(x) + 2 = 0
Factoring out a common term, we get:
2cos(x)(2cos(x) + 2sin(x) + 1) + 2 = 0
Dividing both sides by 2, we have:
cos(x)(2cos(x) + 2sin(x) + 1) + 1 = 0
To find the values of x that satisfy this equation, we need to determine the solutions for which cos(x)(2cos(x) + 2sin(x) + 1) + 1 = 0. Unfortunately, this equation does not have simple analytical solutions. You would need to use numerical methods or approximation techniques to find the values of x that satisfy this equation.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili