Вопрос задан 29.10.2018 в 21:35. Предмет Алгебра. Спрашивает Савельян Алина.

Ось симметрии параболы y= -ax^2+6x-7 есть х=1.Найдите чему равно а?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юнаев Никита.

Подставляем вместо х -1

-а*1+6*1-7-7=-а-8=)

а=-8

 

8х^2+6х-7

Ось симметрии можно найти, найдя вершину параболы.

m(х)=(-в):2а=-0,375

n(у)=-8,125

 

Вроде так

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для параболы с уравнением y = -ax^2 + 6x - 7, где х = 1 является осью симметрии, мы можем использовать это свойство, чтобы найти значение параметра а.

Ось симметрии параболы всегда проходит через вершину параболы. В уравнении параболы вида y = ax^2 + bx + c, координаты вершины можно найти с помощью формулы x = -b / (2a) и y = c - (b^2 / (4a)).

В данном случае, у нас есть х = 1, что означает, что вершина параболы находится в точке (1, y).

Мы можем использовать эти координаты (1, y) для нахождения значения параметра а. Подставим значения в уравнение параболы:

y = -a * 1^2 + 6 * 1 - 7

y = -a + 6 - 7

y = -a - 1

Теперь мы знаем, что вершина параболы находится в точке (1, -a - 1).

Таким образом, для х = 1, парабола y = -ax^2 + 6x - 7 имеет вершину (1, -a - 1).

Найдем значение параметра a, используя координаты вершины:

-a - 1 = 1

-a = 1 + 1

-a = 2

Теперь найдем a, умножив обе части на -1:

a = -2

Таким образом, значение параметра а равно -2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос