
Найди сумму целых корней уравнения : I 32 - 4x - x^2 I + I x^2 + 12x + 32 I = 8x + 64 .


Ответы на вопрос

перепишем
<=>
и (
или
и (
или
{-8}



Для нахождения суммы целых корней уравнения, необходимо решить его с помощью алгебраических методов. Данное уравнение имеет вид:
I 32 - 4x - x^2 I + I x^2 + 12x + 32 I = 8x + 64
Для начала, приведем уравнение к стандартному виду, перенеся все члены в одну сторону:
x^2 + 16x - 32 = 0
Теперь, чтобы найти корни этого уравнения, можно воспользоваться формулой дискриминанта:
D = b^2 - 4ac
где a, b и c соответствуют коэффициентам в уравнении вида ax^2 + bx + c = 0.
В нашем случае, a = 1, b = 16 и c = -32. Подставим эти значения в формулу дискриминанта:
D = 16^2 - 4(1)(-32) = 256 + 128 = 384
Так как дискриминант больше нуля (D > 0), у уравнения есть два различных действительных корня.
Теперь найдем сами корни уравнения, используя формулу:
x = (-b ± √D) / 2a
x1 = (-16 + √384) / 2(1) ≈ -2.828
x2 = (-16 - √384) / 2(1) ≈ -13.172
Таким образом, уравнение имеет два корня: x1 ≈ -2.828 и x2 ≈ -13.172.
Теперь найдем сумму целых корней. В данном случае, оба корня являются действительными, но не являются целыми числами. Следовательно, сумма целых корней уравнения равна нулю.
Ответ: Сумма целых корней уравнения I 32 - 4x - x^2 I + I x^2 + 12x + 32 I = 8x + 64 равна 0.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili