
Вопрос задан 05.09.2018 в 14:53.
Предмет Алгебра.
Спрашивает Слепчевич Вика.
Решите пожалуйста модули



Ответы на вопрос

Отвечает Сатыбаев Нурдаулет.
Ix+2I≤I4-xI
Приравниваем подмодульные выражения к нулю:
x=-2 x=4
-∞_________-2_________4_________+∞
x+2 + + +
4-x + + -
Так как на пределах (-∞;-2]U[-2;4], то есть х∈(-∞;4] обе подмодульные выражения положительные ⇒
x+2≤4-x 2x≤2 x≤1.
На пределе x∈[4;+∞) x+2≤-(4-x) 2≤-4, то есть на этом пределе неравенство решения не имеет. ⇒
Ответ: x≤1.
Ix-1I-Ix+4I>7
Приравниваем подмодульные выражения к нулю:
х=1 х=-4
-∞_________-4_________1_________+∞
x+4 - + +
x-1 - - +
x∈(-∞;-4) -(x-1)-(-(x+4)>7 -x+1+x+4>7 5>7 ⇒ x∉
x∈(-4;1) -(x-1)-(x+4)>7 -x+1-x-4>7 x<-6 ⇒ х∉(-4;1)
x∈(1;+∞) x-1-(x+4)>7 x-1-x-4>7 -5>7 ⇒ x∉
Ответ: нет решений.
Приравниваем подмодульные выражения к нулю:
x=-2 x=4
-∞_________-2_________4_________+∞
x+2 + + +
4-x + + -
Так как на пределах (-∞;-2]U[-2;4], то есть х∈(-∞;4] обе подмодульные выражения положительные ⇒
x+2≤4-x 2x≤2 x≤1.
На пределе x∈[4;+∞) x+2≤-(4-x) 2≤-4, то есть на этом пределе неравенство решения не имеет. ⇒
Ответ: x≤1.
Ix-1I-Ix+4I>7
Приравниваем подмодульные выражения к нулю:
х=1 х=-4
-∞_________-4_________1_________+∞
x+4 - + +
x-1 - - +
x∈(-∞;-4) -(x-1)-(-(x+4)>7 -x+1+x+4>7 5>7 ⇒ x∉
x∈(-4;1) -(x-1)-(x+4)>7 -x+1-x-4>7 x<-6 ⇒ х∉(-4;1)
x∈(1;+∞) x-1-(x+4)>7 x-1-x-4>7 -5>7 ⇒ x∉
Ответ: нет решений.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili