
Один из корней квадратного уравнения 4x^2-15x+c=0 в 4 раза больше второго. Найдите С.


Ответы на вопрос




Finding the Value of C in a Quadratic Equation
To find the value of C in the quadratic equation 4x^2 - 15x + c = 0, given that one of the roots is four times larger than the other, we can use the properties of quadratic equations.
Let's assume the roots of the equation are x1 and x2, with x1 being four times larger than x2.
According to the properties of quadratic equations, the sum of the roots (x1 + x2) is equal to -b/a, and the product of the roots (x1 * x2) is equal to c/a, where a, b, and c are the coefficients of the quadratic equation.
In this case, the coefficient of x^2 is 4, the coefficient of x is -15, and the coefficient of the constant term is c.
Using the given information, we can write the following equations:
x1 + x2 = -(-15)/4 x1 * x2 = c/4
Since x1 is four times larger than x2, we can substitute x2 with x1/4 in the above equations:
x1 + x1/4 = -(-15)/4 x1 * (x1/4) = c/4
Simplifying the equations:
(5/4)x1 = 15/4 (x1^2)/4 = c/4
Multiplying both sides of the first equation by 4/5, we get:
x1 = 3
Substituting x1 = 3 into the second equation, we get:
(3^2)/4 = c/4 9/4 = c/4
Multiplying both sides of the equation by 4, we get:
9 = c
Therefore, the value of C in the quadratic equation 4x^2 - 15x + c = 0, where one of the roots is four times larger than the other, is 9.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili