
Решите методом сложения систему уравнений :


Ответы на вопрос

[4x-3y=67
прибавим
11x=110
x=110:11
x=10
70+3y=43
3y=43-70
3y=-27
y=-27:3
y=-9
(10;-9)



Solving the System of Equations using the Method of Addition:
To solve the system of equations, we will use the method of addition. The given system of equations is:
Equation 1: \(x^2 + y^2 = 20\) (1) Equation 2: \(3x + y = 2\) (2)
To eliminate one variable, we can multiply Equation 2 by 3 and subtract it from Equation 1:
\(3(x^2 + y^2) - (3x + y) = 3(20) - 2\)
Simplifying the equation gives us:
\(3x^2 + 3y^2 - 3x - y = 60 - 2\)
\(3x^2 + 3y^2 - 3x - y = 58\) (3)
Now, let's solve the resulting equation for one variable. We can rearrange Equation 2 to solve for y:
\(y = 2 - 3x\) (4)
Substituting Equation 4 into Equation 3, we get:
\(3x^2 + 3(2 - 3x)^2 - 3x - (2 - 3x) = 58\)
Simplifying the equation gives us:
\(3x^2 + 3(4 - 12x + 9x^2) - 3x - 2 + 3x = 58\)
\(3x^2 + 12 - 36x + 27x^2 - 3x - 2 + 3x = 58\)
Combining like terms, we have:
\(30x^2 - 36x + 10 = 58\)
Rearranging the equation, we get:
\(30x^2 - 36x - 48 = 0\) (5)
Now, we can solve Equation 5 for x using the quadratic formula:
\(x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\)
For Equation 5, the values of a, b, and c are:
\(a = 30\) \(b = -36\) \(c = -48\)
Substituting these values into the quadratic formula, we get:
\(x = \frac{{-(-36) \pm \sqrt{{(-36)^2 - 4(30)(-48)}}}}{{2(30)}}\)
Simplifying the equation gives us:
\(x = \frac{{36 \pm \sqrt{{1296 + 5760}}}}{{60}}\)
\(x = \frac{{36 \pm \sqrt{{7056}}}}{{60}}\)
\(x = \frac{{36 \pm 84}}{{60}}\)
Simplifying further, we have:
\(x_1 = \frac{{36 + 84}}{{60}} = \frac{{120}}{{60}} = 2\)
\(x_2 = \frac{{36 - 84}}{{60}} = \frac{{-48}}{{60}} = -\frac{{4}}{{5}}\)
Now that we have the values of x, we can substitute them back into Equation 4 to find the corresponding values of y:
For \(x_1 = 2\): \(y_1 = 2 - 3(2) = 2 - 6 = -4\)
For \(x_2 = -\frac{{4}}{{5}}\): \(y_2 = 2 - 3\left(-\frac{{4}}{{5}}\right) = 2 + \frac{{12}}{{5}} = \frac{{22}}{{5}}\)
Therefore, the solutions to the system of equations are: \(x_1 = 2, y_1 = -4\) \(x_2 = -\frac{{4}}{{5}}, y_2 = \frac{{22}}{{5}}\)
Solving the Second System of Equations:
The second system of equations is:
Equation 1: \(xy - 3y^2 = -24\) (6) Equation 2: \(xy + 2y^2 = 21\) (7)
To solve this system, we can use the method of substitution. Let's solve Equation 1 for x:
\(x = \frac{{-24 + 3y^2}}{{y}}\) (8)
Substituting Equation 8 into Equation 2, we get:
\(\left(\frac{{-24 + 3y^2}}{{y}}\right)y + 2y^2 = 21\)
Simplifying the equation gives us:
\(-24 + 3y^2 + 2y^3 = 21y\)
Rearranging the equation, we have:
\(2y^3 + 3y^2 - 21y + 24 = 0\) (9)
To solve Equation 9, we can try different values of y and check if they satisfy the equation. By inspection, we can see that y = -3 is a solution. Dividing Equation 9 by (y + 3), we get:
\((y + 3)(2y^2 - 3y + 8) = 0\)
The quadratic equation \(2y^2 - 3y + 8 = 0\) does not have real solutions. Therefore, the only solution for y is y = -3.
Substituting y = -3 into Equation 8, we can find the corresponding value of x:
\(x = \frac{{-24 + 3(-3)^2}}{{-3}}\)
Simplifying the equation gives us:
\(x = \frac{{-24 + 27}}{{-3}} = \frac{{3}}{{-3}} = -1\)
Therefore, the solution to the second system of equations is: \(x = -1, y = -3\)
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili