
Докажите,что число 16^6 - 2^20 кратно 15


Ответы на вопрос

и там немного описка: красным цветом должно быть написано кратно 15, а не 5







Чтобы доказать, что число 16^6 - 2^20 кратно 15, мы можем воспользоваться свойствами делимости и алгеброй.
Для начала, давайте выразим число 16^6 - 2^20 в более удобной форме. Заметим, что 16^6 = (2^4)^6 = 2^(4*6) = 2^24. Таким образом, мы можем переписать исходное число как 2^24 - 2^20.
Теперь давайте рассмотрим свойство делимости на 15. Если число делится на 15, то оно также делится и на 3 и на 5. Проверим оба условия.
Делимость на 3: Для того чтобы число было кратно 3, сумма его цифр должна быть кратна 3. Рассмотрим сумму цифр числа 2^24 - 2^20: 2^24 = 16,777,216 2^20 = 1,048,576
Сумма цифр числа 16,777,216 равна 1 + 6 + 7 + 7 + 7 + 2 + 1 + 6 = 37. Сумма цифр числа 1,048,576 равна 1 + 0 + 4 + 8 + 5 + 7 + 6 = 31.
Оба числа имеют сумму цифр, равную 1 + 3 = 4, что не является кратным 3. Таким образом, мы не можем показать делимость на 3.
Делимость на 5: Для того чтобы число было кратно 5, последняя цифра числа должна быть 0 или 5. Рассмотрим последнюю цифру числа 2^24 - 2^20: 2^24 = 16,777,216 2^20 = 1,048,576
Последняя цифра числа 16,777,216 равна 6. Последняя цифра числа 1,048,576 равна 6.
Оба числа имеют последнюю цифру, равную 6, что не является 0 или 5. Таким образом, мы не можем показать делимость на 5.
Исходя из вышеприведенных рассуждений, мы не можем доказать, что число 16^6 - 2^20 кратно 15.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili