
два насоса работая одновременно могут откачать воду из котлована за 3 часа 36 минут. Один первый
насос затратит на эту работу на 3 часа больше, чем второй. за какое время может выкачать воду каждый насос.

Ответы на вопрос

1)36/3=12Ч(2-ОЙ НАСОС)
12УМНОЖИТЬ НА 3 =36



Calculation of Pumping Time
To determine the time it takes for each pump to pump out the water, we can set up the following equation:
Let x be the time taken by the second pump (in hours). Then, the time taken by the first pump would be x + 3 hours.
According to the given information, when both pumps work together, they can pump out the water from the pit in 3 hours and 36 minutes, which is equivalent to 3.6 hours.
Using the concept of work rates, we can set up the following equation:
1/(x + 3) + 1/x = 1/3.6
To solve this equation, we can multiply through by the least common denominator, which is (x + 3) * x * 3.6:
3.6 * x + 3.6 * (x + 3) = (x + 3) * x
Simplifying the equation:
3.6x + 3.6x + 10.8 = x^2 + 3x
Rearranging the equation:
x^2 - 4.2x - 10.8 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For this equation, a = 1, b = -4.2, and c = -10.8.
Calculating the discriminant:
D = b^2 - 4ac = (-4.2)^2 - 4(1)(-10.8) = 17.64 + 43.2 = 60.84
Since the discriminant is positive, we have two real solutions.
Using the quadratic formula:
x = (-(-4.2) ± √(60.84)) / (2 * 1) x = (4.2 ± √60.84) / 2 x = (4.2 ± 7.8) / 2
The two solutions are:
x1 = (4.2 + 7.8) / 2 = 12 / 2 = 6 x2 = (4.2 - 7.8) / 2 = -3.6 / 2 = -1.8
Since time cannot be negative, we discard the negative solution.
Therefore, the second pump takes 6 hours to pump out the water, and the first pump takes 6 + 3 = 9 hours to pump out the water.
Answer:
- The first pump can pump out the water from the pit in 9 hours. - The second pump can pump out the water from the pit in 6 hours.
Please note that the above calculations are based on the given information and the assumption that the pumps work at a constant rate throughout the pumping process.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili