
(n+1)!(n-1)!= 6(n-1).


Ответы на вопрос

Объяснение:
Ответ: n=2.



Let's solve the equation:
(n+1)!(n-1)! = 6(n-1)
First, let's simplify the left side of the equation by expanding the factorials:
(n+1)! = (n+1)n(n-1)! (n-1)! = (n-1)(n-2)...
Now, substitute these into the equation:
(n+1)n(n-1)(n-1)(n-2)... = 6(n-1)
Next, divide both sides by (n-1) to simplify further:
(n+1)n(n-2)... = 6
Now, let's simplify the right side:
6 = 2 * 3
Now, you can see that the equation is:
(n+1)n(n-2)... = 2 * 3
Now, let's analyze the equation. On the left side, you have a product of consecutive integers, starting from (n+1) and decreasing by 1 with each subsequent term. On the right side, you have the product of 2 and 3.
To make the equation true, you can see that n+1 must be equal to 3 because the left side represents the product of three consecutive integers. So:
n + 1 = 3
Subtract 1 from both sides:
n = 2
So, the solution to the equation is n = 2. You can verify this solution by substituting it back into the original equation:
(2+1)! * (2-1)! = 3! * 1! = 6
So, the equation is satisfied when n = 2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili