
С ОДЗ 1)log 1/3 (log5 x) ) >= 0


Ответы на вопрос

log 3 log5x≤0 log3 5x≤3⁰=1 5x≤3 x≤3.5
x∈(0;3.5]



To solve the inequality , we'll break it down into smaller steps:
Step 1: Solve . Step 2: Determine the critical points where may change sign. Step 3: Check the sign of in each interval defined by the critical points.
Let's go through each step:
Step 1: Solve : To find the points where the logarithm is equal to zero, we set the argument equal to 1 (since for any positive base ): Now, rewrite this equation in exponential form:
Step 2: Determine the critical points where may change sign: The expression inside the outer logarithm, , must be positive since is only defined for positive values of . Thus, we need to solve the inequality: To solve this, recall that when , so we have:
Step 3: Check the sign of in each interval defined by the critical points: We have one critical point at . Now, we can check the sign of in the intervals and .
Interval : Choose (a value within the interval). We have: Since the logarithm of a positive number with a base between 0 and 1 is positive, this is true.
Interval : Choose (a value within the interval). We have: Again, this is true.
So, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili