
Вопрос задан 18.07.2018 в 09:17.
Предмет Алгебра.
Спрашивает Мохов Максим.
Найдите значение выражения , если sin a = 0,2tg(3Pi/2 - 4a) tg(5Pi + 4a) + 2cos(3Pi/2+a)


Ответы на вопрос

Отвечает Krylova Sofya.
Tg a= cos a/sin a
tg(3p/2-4a)= cos(3p/2-4a)/ sin(3p/2-4a)
sin(3p/2-4a)=sin(3p/2)*cos 4a-sin(4a)*cos (3p/2)=-cos 4a
cos(3p/2-4a)=cos(3p/2)*cos 4a+sin(4a)*sin (3p/2)=-sin(4a)
tg(3p/2-4a)=-sin(4a)/-cos 4a=sin 4a/cos 4a
tg(5p+4a)= cos(5+4a)/ sin(5p+4a)
sin(5p+4a)=sin(5p)*cos 4a+sin(4a)*cos (5p)=-sin 4a
cos(5p+4a)=cos(5p)*cos 4a-sin(4a)*sin (5p)=-cos(4a)
tg(5p+4a)=-cos(4a)/-sin 4a=cos 4a/sin 4a
tg(5p+4a)*tg(3p/2-4a)=(cos 4a/sin 4a)*(sin 4a/cos 4a)=1
1+2cos(3 p/2+a)=1+2*(cos(3p/2)*cos(a)-sin(3p/2)*sin(a))=
1+2*sin a
так как sin a=0.2 то 1+2*sin a=1+2*0.2=1.4


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili