
√x-1=3x-7 √x^2-7x+21=3


Ответы на вопрос

1) ОДЗ :
x ∈ [2 1/3 ; + ∞)
Ответ : 2 7/9
2) ОДЗ :
x² - 7x + 21 ≥ 0
x² - 7x + 21 = 0
D = (- 7)² - 4 * 21 = 49 - 84 = - 35 < 0
Дискриминант меньше нуля, а старший коэффициент равен 1 > 0 , значит x² - 7x + 21 > 0 при всех действительных значениях x .
Ответ : 3 ; 4



ОДЗ x-1≥0
x≥1
Ответ: 25/9, т.к. x≠2
ОДЗ x∈R
Ответ: x=3, x=4.



To solve the equations, let's take one step at a time.
Equation 1: √x - 1 = 3x - 7
Step 1: Isolate the square root term by moving the constant term to the other side: √x = 3x - 7 + 1 √x = 3x - 6
Step 2: Square both sides to eliminate the square root: (√x)^2 = (3x - 6)^2 x = (3x - 6)^2
Step 3: Expand and simplify the right side: x = (3x - 6)(3x - 6) x = 9x^2 - 36x + 36
Step 4: Move all terms to one side to set the equation to zero: 9x^2 - 36x + 36 - x = 0 9x^2 - 37x + 36 = 0
Now, we have a quadratic equation. We can use the quadratic formula to find the values of x:
The quadratic formula is given by: x = (-b ± √(b^2 - 4ac)) / 2a
where a = 9, b = -37, and c = 36.
Step 5: Plug the values into the quadratic formula and solve for x: x = [37 ± √((-37)^2 - 4 * 9 * 36)] / 2 * 9 x = [37 ± √(1369 - 1296)] / 18 x = [37 ± √73] / 18
So, the two solutions for Equation 1 are: x = (37 + √73) / 18 x = (37 - √73) / 18
Moving on to Equation 2: √(x^2 - 7x + 21) = 3
Step 1: Square both sides to eliminate the square root: (√(x^2 - 7x + 21))^2 = 3^2 x^2 - 7x + 21 = 9
Step 2: Move the constant term to the other side: x^2 - 7x + 21 - 9 = 0 x^2 - 7x + 12 = 0
This is another quadratic equation. We'll use the quadratic formula again:
a = 1, b = -7, and c = 12.
Step 3: Plug the values into the quadratic formula and solve for x: x = [7 ± √((-7)^2 - 4 * 1 * 12)] / 2 * 1 x = [7 ± √(49 - 48)] / 2 x = [7 ± √1] / 2
So, the two solutions for Equation 2 are: x = (7 + 1) / 2 x = (7 - 1) / 2
Now, let's simplify these solutions:
For Equation 1: x = (37 + √73) / 18 ≈ 2.569 x = (37 - √73) / 18 ≈ 1.431
For Equation 2: x = (7 + 1) / 2 = 4 x = (7 - 1) / 2 = 3
Thus, the solutions for the system of equations are: x ≈ 2.569, x ≈ 1.431, x = 4, and x = 3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili