
Cos(2x+п/4)+cosx/2=0


Ответы на вопрос





To solve the trigonometric equation cos(2x + π/4) + cos(x/2) = 0, we'll need to find the values of x that satisfy this equation. Let's break it down step by step:
Step 1: Combine the two cosine terms: cos(2x + π/4) + cos(x/2) = 0
Step 2: Use the trigonometric identity for the sum of cosines: cos(A) + cos(B) = 2*cos((A + B)/2)*cos((A - B)/2)
Applying this identity to our equation: 2*cos((2x + π/4 + x/2)/2) * cos((2x + π/4 - x/2)/2) = 0
Step 3: Simplify the arguments inside the cosine functions: (2x + π/4 + x/2)/2 = (5x + π)/4 (2x + π/4 - x/2)/2 = (3x + π)/4
So, the equation becomes: 2*cos((5x + π)/4) * cos((3x + π)/4) = 0
Step 4: Set each cosine factor to zero and solve for x:
- cos((5x + π)/4) = 0
- cos((3x + π)/4) = 0
For (1), let's solve for x: (5x + π)/4 = π/2 + kπ where k is an integer. 5x + π = 2π + 4kπ 5x = π + 4kπ x = π/5 + 4kπ/5
For (2), let's solve for x: (3x + π)/4 = π/2 + kπ where k is an integer. 3x + π = 2π + 4kπ 3x = π + 4kπ x = π/3 + 4kπ/3
So the general solutions for x are:
- x = π/5 + 4k*π/5
- x = π/3 + 4k*π/3
where k is any integer (positive, negative, or zero).
These are the values of x that satisfy the given trigonometric equation. Keep in mind that there are infinitely many solutions, as there are infinitely many integers for k.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili