
Sqrt(2)sinx+sqrt(2)cos=2


Ответы на вопрос

~~~~~~~~~~~~~~~~~~~~~~~




To solve the equation sqrt(2)sin(x) + sqrt(2)cos(x) = 2, we can first simplify it by dividing both sides by sqrt(2):
sin(x) + cos(x) = 2/sqrt(2)
Now, simplify the right-hand side:
2/sqrt(2) = 2 * sqrt(2) / 2 = sqrt(2)
So, the equation becomes:
sin(x) + cos(x) = sqrt(2)
Now, to solve this equation, we can use trigonometric identities. One useful identity is:
sin(π/4) = cos(π/4) = 1/√2
Now, we can rewrite sqrt(2) as sin(π/4) * √2:
sqrt(2) = sin(π/4) * √2
Thus, the equation becomes:
sin(x) + cos(x) = sin(π/4) * √2
We can now compare the left-hand side with the right-hand side:
sin(x) = sin(π/4) * √2
Now, we need to find all the values of x that satisfy this equation. Since sin(x) is a periodic function with a period of 2π, the general solution to this equation is:
x = π/4 + 2nπ (where n is an integer)
This means that any value of x that is π/4 plus an integer multiple of 2π will satisfy the original equation. For example, some of the solutions for x are:
x = π/4, 9π/4, 17π/4, -7π/4, -15π/4, ...
Note that the trigonometric functions are periodic, and there are infinitely many solutions to this equation due to their periodic nature.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili