
Вопрос задан 11.07.2018 в 18:16.
Предмет Алгебра.
Спрашивает Вештак Дарья.
Найдите наибольшее четырехзначное число, кратное 11,у которого произведение его цифр равно 12


Ответы на вопрос

Отвечает Марвин Данил.
Пусть ABCD - задуманное 4-значное число, тогда согласно условию задачи:
1) Делится на 11, значит сумма цифр, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах:
2) Произведение цифр равно 12:
A, B, C, D - целые числа от 0 до 9.
Разложим 12 на 4-е множителя: 12=3*1*1*4=3*1*2*2
Проверим, какая из четверок чисел соответствует условию 1) - верно,
Число должно быть наибольшим, т.е. цифра А больше цифры В, значит искомое число
Ответ: 3212


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili