
3 cos 2x - 5 sinx + 1 = 0.


Ответы на вопрос

Ответ:∈Z
Объяснение:



To solve the equation , you can use trigonometric identities to simplify and solve for .
First, we can use the double angle formula for cosine:
Now, replace in the equation:
Distribute and simplify:
Rearrange the terms:
Now, you can use the Pythagorean identity for sine:
So, we can rewrite the equation in terms of :
Distribute and simplify:
Now, it's a quadratic equation in terms of . Let's make a substitution to simplify it further:
Let , then the equation becomes:
Now, solve this quadratic equation for :
You can solve this quadratic equation using the quadratic formula:
In this case, , , and . Plug these values into the formula:
Calculate the discriminant () first:
Now, continue solving for :
So, you have two possible solutions for :
Now, remember that . To find , you can use the arcsin (inverse sine) function:
- x = \arcsin\left(\frac{-5 + \sqrt{217}}{12})
- x = \arcsin\left(\frac{-5 - \sqrt{217}}{12})
These are the solutions for the equation . Depending on the range of you're interested in, you may need to consider the restrictions on the inverse sine function's range.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili