
Вопрос задан 05.07.2018 в 22:18.
Предмет Алгебра.
Спрашивает Бактыбек Нурай.
Докажите, что сумма кубов трех последовательных натуральных чисел делится на 3.


Ответы на вопрос

Отвечает Таипова Диана.
Три последовательные натуральные числа изобразим в виде N-1 N N+1
По условию, (N-1)^3+N^3+(N+1)^3=Y^3 или 3N(N^2+2)=Y^3
Тогда Y делится на 3, Y=3z.
Что и требовалось.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili