Вопрос задан 02.07.2018 в 22:29. Предмет Алгебра. Спрашивает Горбун Саша.

Сумма цифр двузначного числа равна 12. Если переставить его цифры, то получится число, составляющее

4/7 первоначального. Найдите первоначальное число.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лукьянова Настёна.

Пусть первая цифра  -- у,а вторая цифра х. А первоначальное число 10у+х.
Тогда по условию
х+у=12
составим и решим систему уравнений
х+у=12
10х+у=4\7*(10у+х)
выражаем из первого уравнения х
х=12-у
тогда его подставим во второе уравнение
10*(12-у)+у=4\7*(10у+12-у)
решаем это общее уравнение
120-10у+у=4\7*(9у+12)
120-9у=36у\7+48\7
-9у-36у\7=48\7-120
-63у-36у\7=48-840\7
-99у\7=-792\7
99у\7=792\7
7*99у=792*7
693у=5544
у=5544\693
у=8
тогда
х=12-у
х=12-8
х=4
то есть 
10*8+4=84

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос