
Дослідіть на парність функцію y=x³+3x


Ответы на вопрос

Ответ:
Объяснение:
!!!!!!!!!!!!!!!!!!!!!!!




Щоб дослідити функцію на парність, слід перевірити, чи виконується рівність f(x) = f(-x) для будь-якого x у домені функції. Якщо ця рівність виконується, то функція парна; якщо ні, то функція непарна.
Задана функція: \(y = x^3 + 3x\)
1. Перевірка на парність: \[f(x) = x^3 + 3x\] \[f(-x) = (-x)^3 + 3(-x) = -x^3 - 3x\]
Тепер порівняємо \(f(x)\) та \(f(-x)\): \[f(x) \stackrel{?}{=} f(-x)\] \[x^3 + 3x \stackrel{?}{=} -x^3 - 3x\]
Очевидно, що ця рівність не виконується. Тому функція не є парною.
2. Перевірка на непарність: Якщо функція не є парною, то можемо перевірити, чи вона є непарною, тобто, чи виконується рівність \(-f(x) = f(-x)\). \[-f(x) = -(x^3 + 3x) = -x^3 - 3x\] \[f(-x) = -x^3 - 3x\]
Ці рівності виконуються, тому функція є непарною.
Отже, функція \(y = x^3 + 3x\) є непарною.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili