
Строчнооооооо Функцію задано формулою f(x)=-x2+2x+8 1) побудуйте графік функції f(x) 2) знайдіть
суму цілих значень аргумента при яких функція набуває не від’ємних значень

Ответы на вопрос

Ответ:




Function and Graph:
The given function is f(x) = -x^2 + 2x + 8. To plot the graph of this function, we can use a graphing calculator or software. Here is the graph of the function:
Sum of Non-Negative Values:
To find the sum of the integer values of x for which the function f(x) takes non-negative values, we need to determine the range of x values that satisfy this condition.In order for f(x) to be non-negative, it must be greater than or equal to zero. So we can set up the inequality:
-f(x) ≥ 0
Substituting the given function, we have:
-(-x^2 + 2x + 8) ≥ 0
Simplifying the inequality:
x^2 - 2x - 8 ≥ 0
To find the values of x that satisfy this inequality, we can factorize the quadratic expression:
(x - 4)(x + 2) ≥ 0
The critical points are x = -2 and x = 4. We can use these points to divide the number line into three intervals: (-∞, -2), (-2, 4), and (4, ∞).
Now, we need to determine the sign of the expression (x - 4)(x + 2) in each interval. We can choose a test point from each interval and substitute it into the expression to determine the sign.
For example, let's choose x = -3 from the interval (-∞, -2):
(-3 - 4)(-3 + 2) = (-7)(-1) = 7
Since the result is positive, we know that the expression (x - 4)(x + 2) is positive in the interval (-∞, -2).
Similarly, we can choose x = 0 from the interval (-2, 4):
(0 - 4)(0 + 2) = (-4)(2) = -8
Since the result is negative, we know that the expression (x - 4)(x + 2) is negative in the interval (-2, 4).
Finally, let's choose x = 5 from the interval (4, ∞):
(5 - 4)(5 + 2) = (1)(7) = 7
Since the result is positive, we know that the expression (x - 4)(x + 2) is positive in the interval (4, ∞).
Now, we can determine the values of x for which the function f(x) takes non-negative values. These values are in the intervals where the expression (x - 4)(x + 2) is greater than or equal to zero.
From our analysis, we can see that the function f(x) takes non-negative values in the intervals (-∞, -2] and [4, ∞). To find the sum of the integer values of x in these intervals, we can list the integers in each interval and calculate their sum:
(-∞, -2]: -2, -1, 0, 1, 2
[4, ∞): 4, 5, 6, 7, ...
The sum of the integer values in these intervals is -2 + -1 + 0 + 1 + 2 + 4 + 5 + 6 + 7 + ...


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili