
Решите систему уравнений методом сложения 4x+7y=18 6x+11y=10 ;


Ответы на вопрос




Solving the System of Equations using the Method of Addition
To solve the system of equations using the method of addition, we will add the two equations together to eliminate one of the variables. Let's solve the system of equations:
Equation 1: 4x + 7y = 18 Equation 2: 6x + 11y = 10
To eliminate the variable "x," we can multiply Equation 1 by 6 and Equation 2 by 4. This will make the coefficients of "x" in both equations equal:
6 * (4x + 7y) = 6 * 18 4 * (6x + 11y) = 4 * 10
Simplifying these equations, we get:
24x + 42y = 108 24x + 44y = 40
Now, subtracting Equation 1 from Equation 2, we can eliminate "x":
(24x + 44y) - (24x + 42y) = 40 - 108
Simplifying further, we have:
2y = -68
Dividing both sides of the equation by 2, we find:
y = -34
Now, substitute the value of "y" back into either Equation 1 or Equation 2 to solve for "x." Let's use Equation 1:
4x + 7(-34) = 18
Simplifying, we get:
4x - 238 = 18
Adding 238 to both sides of the equation, we have:
4x = 256
Dividing both sides of the equation by 4, we find:
x = 64
Therefore, the solution to the system of equations is x = 64 and y = -34.
Note: The solution to the system of equations is x = 64 and y = -34.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili