
X^2+8x<0 Помогите пожалуйста


Ответы на вопрос

Ответ:
-x(x+8)=0
x1=0
x+8=0
x2=-8



Solving the Inequality X^2 + 8x < 0
To solve the inequality X^2 + 8x < 0, we can use the method of factoring and sign analysis.
Factoring the Quadratic Expression
First, let's factor the quadratic expression X^2 + 8x.
The factored form of the quadratic expression is x(x + 8).
Finding the Critical Points
To find the critical points, we set each factor equal to zero and solve for x:
1. Setting x = 0 gives us one critical point. 2. Setting x + 8 = 0 gives us the second critical point.
Solving x + 8 = 0 gives us x = -8.
So, the critical points are x = 0 and x = -8.
Sign Analysis
Now, we can perform a sign analysis to determine the intervals where the inequality is satisfied.
- For x < -8, both x and (x + 8) are negative, so the product x(x + 8) is positive. - For -8 < x < 0, x is negative and (x + 8) is positive, so the product x(x + 8) is negative. - For x > 0, both x and (x + 8) are positive, so the product x(x + 8) is positive.
Conclusion
Therefore, the solution to the inequality X^2 + 8x < 0 is -8 < x < 0.
This means that the inequality is satisfied when -8 < x < 0.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili