
X²+2x-8=0 теорема виета сделайте прошу с решением


Ответы на вопрос




Ответ:
4;-2
Объяснение:
x²+2x-8=0
x1+x2=b
x1*x2=c
-2+4=2
4*(-2)= -8
X1= -2
x2=4



Equation and Vieta's Theorem
The given equation is x² + 2x - 8 = 0. To solve this equation, we can use Vieta's theorem, which relates the coefficients of a polynomial equation to its roots.
According to Vieta's theorem, for a quadratic equation ax² + bx + c = 0 with roots x₁ and x₂, the following relationships hold:
1. The sum of the roots is equal to the negation of the coefficient of the linear term divided by the coefficient of the quadratic term: x₁ + x₂ = -b/a. 2. The product of the roots is equal to the constant term divided by the coefficient of the quadratic term: x₁ * x₂ = c/a.
In our equation, the coefficient of the quadratic term is 1, the coefficient of the linear term is 2, and the constant term is -8. Applying Vieta's theorem, we can find the sum and product of the roots.
Solution
1. Sum of the roots: - The sum of the roots is equal to the negation of the coefficient of the linear term divided by the coefficient of the quadratic term. - In our equation, a = 1 and b = 2. - Therefore, the sum of the roots is x₁ + x₂ = -2/1 = -2.
2. Product of the roots: - The product of the roots is equal to the constant term divided by the coefficient of the quadratic term. - In our equation, a = 1 and c = -8. - Therefore, the product of the roots is x₁ * x₂ = -8/1 = -8.
Now, let's solve the equation using the quadratic formula to find the exact values of the roots.
Quadratic Formula
The quadratic formula is given by:
x = (-b ± √(b² - 4ac)) / (2a)
For our equation x² + 2x - 8 = 0, the coefficients are a = 1, b = 2, and c = -8.
Substituting these values into the quadratic formula, we get:
x = (-2 ± √(2² - 4 * 1 * -8)) / (2 * 1)
Simplifying further:
x = (-2 ± √(4 + 32)) / 2
x = (-2 ± √36) / 2
x = (-2 ± 6) / 2
This gives us two possible solutions:
1. x₁ = (-2 + 6) / 2 = 4 / 2 = 2 2. x₂ = (-2 - 6) / 2 = -8 / 2 = -4
Therefore, the solutions to the equation x² + 2x - 8 = 0 are x₁ = 2 and x₂ = -4.
Verification
To verify the solutions, we can substitute them back into the original equation and check if they satisfy it.
For x = 2: 2² + 2 * 2 - 8 = 4 + 4 - 8 = 0
For x = -4: (-4)² + 2 * (-4) - 8 = 16 - 8 - 8 = 0
Both solutions satisfy the equation, confirming that x₁ = 2 and x₂ = -4 are indeed the solutions.
Therefore, the solutions to the equation x² + 2x - 8 = 0 are x₁ = 2 and x₂ = -4.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili