
Вопрос задан 22.06.2018 в 20:18.
Предмет Алгебра.
Спрашивает Шевеленко Эви.
решить графически ctg x = 1 ctg x = корень 3/3 ctg x = - корень 3/3 ctg x = 0


Ответы на вопрос

Отвечает Клименко Ваня.
На декартовой системе координат рисуете асимптоты 0, pi, 2pi ..., -pi, -2pi ...
(как на рисунке с графиком катангенса - вертикальные пунктирные прямые к которым стремятся ост катангенса)
график функции ctg x = 1 => x=45(pi/4)- множество точек на всех интервалах(по 1 на каждом) интервалов напр. (0;pi), (pi;2pi),(2pi;3pi) ...,(-pi;0), (-2pi;-pi),(-3pi;-2pi).... для каждого интервала получаем свой х х=pi/4+pi*n у=1, где n целое , pi=3.14
т.е (pi/4;1), (pi/4+pi;1), (pi/4+2pi;1) .... (pi/4-pi;1), (pi/4-2pi;1)
ctg x = корень 3/3=1/корень 3
аналогично х=pi/3 +pi*n, у=корень 3/3
ctg x = - корень 3/3
аналогично х=2pi/3 +pi*n, у=- корень 3/3
ctg x = 0
аналогично х=pi/2 +pi*n, у=0



Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili