
СРОЧНО ДОПОМОЖІТЬ БУДЬ ЛАСКА 1. Розв'яжіть рiвняння: a) 4x = 24 + x; б) 4(x - 3) = x + 6; в)
0,3(8 – 3у) = 3,2 – 0,8(у – 7); г)x²-3x=0 д)х²+15х+6=0 e)x4-13x2+36=0 ж) x²-20 X 2x x²-20 =1

Ответы на вопрос

Ответ:
а) 4х=24+х
4х-х=24
3х=24
х=8
б) 4(х-3)=х+6
4х-12=х+6
4х-х=6+12
3х=18
х=6
в) 0,3(8-у)=3,2-0,8(у-7)
2,4-0,9у=3,2-0,8у+5,6
-0,9у+0,8у=3,2+5,6-2,4
-0,1у=6,4
у=-64
г) x²-3x=0
х(х-3)=0
х=0, х-3=0
х=0, х=3
х1=0
х1=3
д) х²+15х+6=0
на фото
e) x•4-13x•2+36=0
4х-26х+36=0
-22х=-36
х=18/11
ж) x²-20 X 2x x²-20 =1
XЄ̶R




a) 4x = 24 + x:
To solve this equation, we want to isolate the variable x on one side of the equation.
Subtract x from both sides: 4x - x = 24 + x - x 3x = 24
Divide both sides by 3: 3x/3 = 24/3 x = 8
Therefore, the solution to the equation 4x = 24 + x is x = 8.
b) 4(x - 3) = x + 6:
Let's simplify the equation first.
Distribute 4 to both terms inside the parentheses: 4x - 12 = x + 6
Next, let's isolate the variable x by moving all the terms involving x to one side of the equation.
Subtract x from both sides: 4x - x - 12 = x - x + 6 3x - 12 = 6
Add 12 to both sides: 3x - 12 + 12 = 6 + 12 3x = 18
Divide both sides by 3: 3x/3 = 18/3 x = 6
Therefore, the solution to the equation 4(x - 3) = x + 6 is x = 6.
c) 0.3(8 - 3y) = 3.2 - 0.8(y - 7):
Let's simplify the equation first.
Distribute 0.3 to both terms inside the parentheses: 0.3 * 8 - 0.3 * 3y = 3.2 - 0.8(y - 7)
Multiply: 2.4 - 0.9y = 3.2 - 0.8y + 5.6
Combine like terms: -0.9y + 0.8y = 3.2 + 5.6 - 2.4
Simplify: -0.1y = 6.4
Divide by -0.1: y = -64
Therefore, the solution to the equation 0.3(8 - 3y) = 3.2 - 0.8(y - 7) is y = -64.
d) x² - 3x = 0:
Factor out x: x(x - 3) = 0
Now we have two factors, and for the equation to equal zero, at least one of the factors must be zero.
So we have two possibilities:
- x = 0
- x - 3 = 0
For the second possibility, add 3 to both sides: x - 3 + 3 = 0 + 3 x = 3
Therefore, the solutions to the equation x² - 3x = 0 are x = 0 and x = 3.
e) x⁴ - 13x² + 36 = 0:
Let's solve this equation by introducing a substitution. Let's set y = x².
Substituting y into the equation, we get: y² - 13y + 36 = 0
Now we can solve this quadratic equation for y.
Factorize: (y - 4)(y - 9) = 0
Setting each factor equal to zero, we have: y - 4 = 0 or y - 9 = 0
For the first case, solve for y: y - 4 = 0 y = 4
For the second case, solve for y: y - 9 = 0 y = 9
Now substitute y back in


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili