Вопрос задан 18.05.2023 в 01:20. Предмет Алгебра. Спрашивает Устюгова Илона.

Выдели полный квадрат и реши уравнение х2+х=1/4​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Афонин Ваня.
2х+х = 1/4
3х=1/4
Решение, ответ: х=1/12
0 0
Отвечает Бондаренко Леана.

Ответ:

х = (√2 - 1)/2 ; х = -(√2 + 1)/2

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить уравнение x^2 + x = 1/4, сначала нужно привести его к квадратному виду. Мы можем сделать это, добавив и вычитая половину коэффициента при x в квадрате. В данном случае коэффициент при x в квадрате равен 1, поэтому мы добавим и вычтем 1/4:

x^2 + x + 1/4 - 1/4 = 1/4.

Теперь перепишем уравнение:

(x + 1/2)^2 - 1/4 = 1/4.

Теперь выделим полный квадрат, вычтя 1/4 с обеих сторон:

(x + 1/2)^2 = 1/4 + 1/4.

(x + 1/2)^2 = 1/2.

Теперь возьмем квадратный корень от обеих сторон:

x + 1/2 = ±√(1/2).

x + 1/2 = ±(√2/2).

Теперь решим два уравнения:

  1. x + 1/2 = √2/2. x = √2/2 - 1/2. x = (√2 - 1)/2.

  2. x + 1/2 = -√2/2. x = -√2/2 - 1/2. x = (-√2 - 1)/2.

Таким образом, уравнение x^2 + x = 1/4 имеет два решения: x = (√2 - 1)/2 и x = (-√2 - 1)/2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос