Вопрос задан 17.05.2023 в 16:42. Предмет Алгебра. Спрашивает Кравченко Наташа.

Разложите на множители квадратный трехчлен1) х²-10х+21 2)5y²+9y-2

1 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Молчанов Женя.
1)  х² - 10х + 21 =  0
     По т. Виета  х1 + х2 = 10, 

                        х1 х2 =  21
            
х1 = 3,   х2 = 7    
       х
² - 10х + 21 =  (х - 3)(х - 7)

2)  5y² + 9y - 2
= 0
    D = 81 + 4*5*2 = 81 +40 = 121  корненьD = 11
   х1 = (-9 +11)/10  = 0,2
  х2 = (-9 - 11)/10  = - 2
   5y² + 9y - 2 =  5(х - 0,2)(х + 2)  =  (5х - 1)(х + 2) 
8 0
Отвечает Белов Егор.
A) найдем корни квадратного трехчлена 
x^2-10x+21=0
по Виета
x_1=7\  \ \ \ \ \ x_2=3\\\
x^2-10x+21=(x-7)(x-3)

б) найдем корни квадратного трехчлена 
   5y^2+9y-2=0\\\
D=81+40=121\\\
x_1=\frac{-9+11}{10}=0,2 \ \ \ \ \ \ x_2=\frac{-9-11}{10}=-2\\\
5y^2+9y-2=5(x-0,2)(x+2)
1 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разложим квадратные трехчлены на множители:

  1. x² - 10x + 21

Мы ищем два числа, которые при перемножении дают 21, а при сложении дают -10. Такие числа -7 и -3.

x² - 7x - 3x + 21

Теперь разделим трехчлен на две группы:

(x² - 7x) + (-3x + 21)

Теперь факторизуем каждую группу, используя общий множитель:

x(x - 7) - 3(x - 7)

Обратите внимание, что в скобках (x - 7) является общим множителем. Теперь можно вынести его за скобки:

(x - 7)(x - 3)

Таким образом, разложение на множители квадратного трехчлена x² - 10x + 21 будет (x - 7)(x - 3).

  1. 5y² + 9y - 2

Мы ищем два числа, которые при перемножении дают -10, а при сложении дают 9. Такие числа 10 и -1.

5y² + 10y - y - 2

Теперь разделим трехчлен на две группы:

(5y² + 10y) + (-y - 2)

Теперь факторизуем каждую группу, используя общий множитель:

5y(y + 2) - 1(y + 2)

Обратите внимание, что в скобках (y + 2) является общим множителем. Теперь можно вынести его за скобки:

(y + 2)(5y - 1)

Таким образом, разложение на множители квадратного трехчлена 5y² + 9y - 2 будет (y + 2)(5y - 1).

1 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос