Вопрос задан 27.04.2021 в 13:37. Предмет Алгебра. Спрашивает Гордеев Григорий.

Найдите область определения:y=5/^×2-4

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романов Алексей.

решение задания смотри на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Поскольку под знаком корня не может быть отрицательного числа, то необходимо, чтобы выражение 5/x^2-4 было больше или равно нулю:

5/x^2-4 >= 0

Вычитаем 5 из обеих частей:

1/x^2 - 4/5 >= 0

Далее, приводим к общему знаменателю:

5/x^2 - 4/5 * x^2/x^2 >= 0

(5 - 4x^2) / (5x^2) >= 0

Теперь мы можем приступить к решению неравенства:

(5 - 4x^2) / (5x^2) >= 0

Когда числитель равен нулю, то значение функции будет равно 0. Найдём корни уравнения 5 - 4x^2 = 0:

5 - 4x^2 = 0

4x^2 = 5

x^2 = 5/4

x = +/- sqrt(5/4) = +/- sqrt(5) / 2

То есть, функция равна 0 в точках x = -sqrt(5)/2 и x = sqrt(5)/2.

Разобьём интервалы на числовой прямой на три части:

  1. x < -sqrt(5)/2
  2. -sqrt(5)/2 < x < sqrt(5)/2
  3. x > sqrt(5)/2

Далее, рассмотрим знак числителя и знаменателя на каждом из этих интервалов:

  1. x < -sqrt(5)/2 Числитель и знаменатель отрицательны, значит, значение функции положительно.
  2. -sqrt(5)/2 < x < sqrt(5)/2 Числитель отрицательный, а знаменатель положительный, значит, значение функции отрицательно.
  3. x > sqrt(5)/2 Числитель и знаменатель положительны, значит, значение функции положительно.

Таким образом, область определения функции y = 5/x^2 - 4 - все действительные числа, кроме точек x = -sqrt(5)/2 и x = sqrt(5)/2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос