Вопрос задан 23.04.2021 в 21:24. Предмет Алгебра. Спрашивает Хасанова Язгуль.

(цифра после скобок степень) 5(-2/5)3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сидорусь Елизавета.

5(-2/5)3

5(-8/125)

-8/25

-0,32

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить это выражение, сначала возводим основание в степень, а затем умножаем результат на коэффициент.

Итак, начнем с вычисления основания в степени:

5^(-2/5) = 1/5^(2/5)

Теперь возведем дробь в куб:

(1/5^(2/5))^3 = 1/5^((2/5)*3) = 1/5^(6/5) = 1/(5^6 * 5^(1/5))

Используя свойство, что a^(-n) = 1/a^n, можем переписать 5^(1/5) в виде 1/5^(-1/5):

1/(5^6 * 5^(1/5)) = 1/(5^6 * 1/5^(-1/5)) = 1/(5^6 * 5^(1/5)) = 5^(-31/5)

Теперь, чтобы получить итоговый результат, умножим это значение на 3:

5^(-31/5) * 3 = 3/5^(31/5)

Таким образом, ответ равен 3/5^(31/5).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос