
5 log7 (x^2 - 7x +12) меньше либо равно 6+ log7 (x-4)^5/(x-3)


Ответы на вопрос

Разложим на множители x² - 7x + 12
x² - 7x + 12 = 0
D = 49 - 48 = 1
x1 = 0.5(7 - 1) = 3 x2 = 0.5(7 + 1) = 4
(x² - 7x + 12) = (x - 3)(x - 4)
log₇[(x - 3)⁵(x - 4)⁵ ≤ 6 + log₇[(x - 4)⁵ /(x - 3)]
ОДЗ
[(x - 3)(x - 4)]⁵ > 0
[(x- 4)⁵/(x - 3) > 0
методом интервалов получаем ОДЗ
x∈ (-∞; 3) U (4; +∞)
log₇[(x - 3)⁵(x - 4)⁵ - log₇[(x - 4)⁵ /(x - 3)] ≤ 6
log₇[(x - 3)⁵(x - 4)⁵(x - 3)/(x - 4)⁵] ≤ 6
x ≠ 4
сокращаем на (x - 4)⁵
log₇(x - 3)⁶ ≤ 6
log₇(x - 3)⁶ ≤ log₇7⁶
(х - 3)⁶ ≤ 7⁶
Если х - 3 > 0, то х > 3 и
х - 3 ≤ 7 -----> x ≤ 10, тогда х ∈ (3; 10]
Если х - 3 < 0, то х < 3 и х ≤ 10, тогда х ∈ (-∞; 3)
Сопоставляя полученное решение с ОДЗ, запишем ответ:
x∈ (-∞; 3) U (4; 10]



To solve this inequality, we can start by simplifying both sides using logarithm rules. Remember that the logarithm of a product is the sum of the logarithms of the factors, and the logarithm of a quotient is the difference of the logarithms of the numerator and denominator. Applying these rules, we get:
5 log7 (x^2 - 7x +12) <= 6+ log7 [(x-4)^5/(x-3)]
Next, we can use the rule that says we can move the logarithm inside the argument as an exponent. This gives us:
log7 [(x^2 - 7x +12)^5] <= log7 [7^6 * (x-4)^5/(x-3)]
Now we can remove the logarithm on both sides by taking the exponential of base 7. This gives us:
(x^2 - 7x +12)^5 <= 7^6 * (x-4)^5/(x-3)
To simplify this expression, we can take the fifth root of both sides, which gives us:
x^2 - 7x +12 <= 7 * (x-4)/(x-3)
Expanding the right-hand side and simplifying, we get:
x^2 - 7x +12 <= 7x - 28
Moving all the terms to one side, we get:
x^2 - 14x + 40 <= 0
Factorizing the left-hand side, we get:
(x - 10)(x - 4) <= 0
The solution to this inequality is x <= 4 or x >= 10. However, we also need to check the denominator of the logarithm to make sure it is positive. For x <= 4, the denominator (x - 3) is negative, so this solution is not valid. Therefore, the only solution that satisfies both the inequality and the condition on the denominator is x >= 10.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili