
Cos (-x/4)= - корень 2/2


Ответы на вопрос




To solve the equation cos(-x/4) = -√2/2, we can use the properties of the cosine function. The equation states that the cosine of an angle (-x/4) is equal to -√2/2.
Since the cosine function is an even function, cos(-θ) = cos(θ), we can rewrite the equation as cos(x/4) = -√2/2.
To find the values of x that satisfy this equation, we need to determine when the cosine function equals -√2/2. We can do this by considering the unit circle and identifying the angles where the cosine value is -√2/2.
On the unit circle, the cosine of π/4 radians (45 degrees) is √2/2. Since the cosine function is an even function, the cosine of -π/4 radians (-45 degrees) is also √2/2.
Therefore, we can write the equation as x/4 = π/4 + 2nπ or x/4 = -π/4 + 2nπ, where n is an integer representing the number of complete revolutions around the unit circle.
To find the values of x, we multiply both sides of the equation by 4 to isolate x: For the first case, x = π + 8nπ. For the second case, x = -π + 8nπ.
So, the solutions to the equation cos(-x/4) = -√2/2 are: x = π + 8nπ, x = -π + 8nπ,
where n is an integer.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili