
(х-4)²-36=0 (7х-1)²-(х+9)²=0


Ответы на вопрос





To solve the equations, let's work on them one by one:
- (х - 4)² - 36 = 0
Expanding the equation, we have:
(x - 4)² - 36 = 0 x² - 8x + 16 - 36 = 0 x² - 8x - 20 = 0
Now, we can solve this quadratic equation. We can either factorize it or use the quadratic formula. Let's use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
For our equation, a = 1, b = -8, and c = -20.
x = (-(-8) ± √((-8)² - 4(1)(-20))) / (2(1)) x = (8 ± √(64 + 80)) / 2 x = (8 ± √144) / 2 x = (8 ± 12) / 2
This gives us two possible solutions:
x₁ = (8 + 12) / 2 = 20 / 2 = 10 x₂ = (8 - 12) / 2 = -4 / 2 = -2
Therefore, the solutions to the equation (х - 4)² - 36 = 0 are x = 10 and x = -2.
- (7х - 1)² - (х + 9)² = 0
Expanding the equation, we have:
(7x - 1)² - (x + 9)² = 0 49x² - 14x + 1 - (x² + 18x + 81) = 0 49x² - 14x + 1 - x² - 18x - 81 = 0 48x² - 32x - 80 = 0 6x² - 4x - 10 = 0 (dividing the equation by 8 to simplify)
Now, we can solve this quadratic equation. Again, we can either factorize it or use the quadratic formula. Let's use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
For our equation, a = 6, b = -4, and c = -10.
x = (-(-4) ± √((-4)² - 4(6)(-10))) / (2(6)) x = (4 ± √(16 + 240)) / 12 x = (4 ± √256) / 12 x = (4 ± 16) / 12
This gives us two possible solutions:
x₁ = (4 + 16) / 12 = 20 / 12 = 5/3 x₂ = (4 - 16) / 12 = -12 / 12 = -1
Therefore, the solutions to the equation (7х - 1)² - (х + 9)² = 0 are x = 5/3 and x = -1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili