
√3 sin2x+cos2x<=-√3 sin^2x-sinxcosx-2cos^2x>0 lctgxl<1


Ответы на вопрос





To analyze the inequality √3 sin(2x) + cos(2x) ≤ -√3 sin^2(x) - sin(x)cos(x) - 2cos^2(x) > 0 and the additional condition lctg(x) < 1, let's break it down step by step.
Step 1: Simplify the inequality and the condition. √3 sin(2x) + cos(2x) ≤ -√3 sin^2(x) - sin(x)cos(x) - 2cos^2(x) > 0 lctg(x) < 1
Step 2: Use trigonometric identities to simplify the expressions. √3 sin(2x) = 2√3 sin(x) cos(x) cos(2x) = cos^2(x) - sin^2(x) = cos^2(x) - (1 - cos^2(x)) = 2cos^2(x) - 1
Substituting these identities into the inequality: 2√3 sin(x) cos(x) + (2cos^2(x) - 1) ≤ -√3 sin^2(x) - sin(x)cos(x) - 2cos^2(x) > 0
Simplifying further: 2√3 sin(x) cos(x) + 2cos^2(x) - 1 ≤ -√3 sin^2(x) - sin(x)cos(x) - 2cos^2(x) > 0
Step 3: Combine like terms: 3√3 sin^2(x) - 3sin(x)cos(x) - 4cos^2(x) + 1 > 0
Step 4: Rearrange the inequality: 3√3 sin^2(x) - 3sin(x)cos(x) - 4cos^2(x) + 1 - 0
Step 5: Simplify the condition: lctg(x) < 1
Step 6: Analyze the solutions: To find the solutions to this inequality and the condition, we need to solve the equations individually and then find the overlapping solution set.
For lctg(x) < 1: This condition states that the cotangent of x must be less than 1. The cotangent function is the reciprocal of the tangent function, so lctg(x) = cos(x) / sin(x). When the cotangent is less than 1, it means that cos(x) is less than sin(x).
For √3 sin^2(x) - 3sin(x)cos(x) - 4cos^2(x) + 1 > 0: We can rewrite this as a quadratic equation: (√3 sin(x) - 4cos(x))(sin(x) + cos(x) - 1) > 0
From this quadratic equation, we get two factors: (√3 sin(x) - 4cos(x)) and (sin(x) + cos(x) - 1).
Now, we need to analyze the signs of these factors to determine the solution.
- When (√3 sin(x) - 4cos(x)) > 0 and (sin(x) + cos(x) - 1) > 0, the quadratic equation is greater than 0.
- When (√3 sin(x) - 4cos(x)) < 0 and (sin(x) + cos(x) - 1) < 0, the quadratic equation is greater than 0.
Step 7: Analyzing the signs of the factors: To analyze the signs, we can use the unit circle or trig


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili