Вопрос задан 08.03.2021 в 17:39. Предмет Алгебра. Спрашивает Владимиров Костя.

Точка C - середина отрезка AB. Найдите координаты точки B, если 1) A (3;-4), C(2;1)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Героев Никита.
Ответ )((()()()()()()()(((*&^^/$$#
0 0
Отвечает Гредасов Егор.
Середина отрезка находится по формуле 

x = (x1+x2)/2 
y = (y1+y2)/2



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To find the coordinates of point B, knowing that point C is the midpoint of segment AB, we can use the midpoint formula. The midpoint formula states that the coordinates of the midpoint (Cx, Cy) are the average of the coordinates of the endpoints (Ax, Ay) and (Bx, By).

Given: Point A: (3, -4) Point C: (2, 1)

Let's denote the coordinates of point B as (Bx, By).

Using the midpoint formula, we have:

Cx = (Ax + Bx) / 2 Cy = (Ay + By) / 2

Plugging in the known values:

2 = (3 + Bx) / 2 1 = (-4 + By) / 2

Now, we can solve these equations to find the values of Bx and By.

2 = (3 + Bx) / 2 4 = 3 + Bx Bx = 4 - 3 Bx = 1

1 = (-4 + By) / 2 2 = -4 + By By = 2 + 4 By = 6

Therefore, the coordinates of point B are (1, 6).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос