
6sin^2 x+(3/2)sin2x-2=5cos^2 x


Ответы на вопрос

Пусть tg x = t (t ∈ R), тогда имеем
Обратная замена



To solve the equation 6sin^2(x) + (3/2)sin(2x) - 2 = 5cos^2(x), we can use trigonometric identities to simplify the equation and then solve for the values of x.
Let's start by using the double-angle identity for sine, which states that sin(2x) = 2sin(x)cos(x). We can substitute this into the equation:
6sin^2(x) + (3/2)(2sin(x)cos(x)) - 2 = 5cos^2(x)
Now, let's simplify further:
6sin^2(x) + 3sin(x)cos(x) - 2 = 5cos^2(x)
Next, let's use the Pythagorean identity sin^2(x) + cos^2(x) = 1 to replace sin^2(x) and cos^2(x):
6(1 - cos^2(x)) + 3sin(x)cos(x) - 2 = 5(1 - sin^2(x))
Distribute and rearrange the equation:
6 - 6cos^2(x) + 3sin(x)cos(x) - 2 = 5 - 5sin^2(x)
Combine like terms:
-6cos^2(x) + 3sin(x)cos(x) - 6sin^2(x) = -4
Divide the entire equation by -1 to make the coefficient of the quadratic term positive:
6cos^2(x) - 3sin(x)cos(x) + 6sin^2(x) = 4
Now, we can simplify the equation further:
2cos^2(x) - sin(x)cos(x) + 2sin^2(x) = 4/3
Since sin^2(x) = 1 - cos^2(x), we can substitute this into the equation:
2cos^2(x) - sin(x)cos(x) + 2(1 - cos^2(x)) = 4/3
Distribute and rearrange:
2cos^2(x) - sin(x)cos(x) + 2 - 2cos^2(x) = 4/3
-sin(x)cos(x) + 2 = 4/3
Now, we have a simplified equation:
-sin(x)cos(x) = 4/3 - 2
-sin(x)cos(x) = 4/3 - 6/3
-sin(x)cos(x) = -2/3
At this point, it becomes more challenging to find exact solutions algebraically. However, we can approximate solutions using numerical methods or calculators.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili