
(х^{2}+3х-25)^{2}-2(х^{2}+3х-25)=-7


Ответы на вопрос

(х^{2}+3х-25)^{2}-2(х^{2}+3х-25)=-7
(x2+3x-25)^2-2(x^2+3x-25)=(x^2+3x-27)(x^2+3x-25)
(x^2+3x-27)(x^2+3x-25)=-7
После разложения каждой части по отдельности(по Дискрименанту) мы видим, что действительных решений нет.
Ответ: нет действительных решений



To solve the equation (x^2 + 3x - 25)^2 - 2(x^2 + 3x - 25) = -7
, we can start by simplifying it step by step:
Let's substitute y = (x^2 + 3x - 25)
to simplify the equation:
y^2 - 2y = -7
Rearranging the equation, we have:
y^2 - 2y + 7 = 0
Now, we can solve this quadratic equation for y. However, it is important to note that the original equation will have multiple solutions for x, but we will find the solutions for y first:
Using the quadratic formula, where a = 1, b = -2, and c = 7:
y = (-(-2) ± √((-2)^2 - 4(1)(7))) / (2(1)) y = (2 ± √(4 - 28)) / 2 y = (2 ± √(-24)) / 2 y = (2 ± 2√6i) / 2
Simplifying further:
y = 1 ± √6i
Now, we can substitute back y = (x^2 + 3x - 25):
x^2 + 3x - 25 = 1 ± √6i
To find the solutions for x, we can solve two separate equations:
- x^2 + 3x - 25 = 1 + √6i
- x^2 + 3x - 25 = 1 - √6i
Let's solve each equation separately:
- x^2 + 3x - 25 = 1 + √6i
Rearranging the equation, we have:
x^2 + 3x - 26 = √6i
To solve this equation, we'll square both sides:
(x^2 + 3x - 26)^2 = (√6i)^2 (x^2 + 3x - 26)^2 = -6
Expanding the left side of the equation:
x^4 + 6x^3 - 5x^2 - 102x + 676 = -6
Rearranging and simplifying:
x^4 + 6x^3 - 5x^2 - 102x + 682 = 0
This is a quartic equation, and finding its solutions can be a complex process. There isn't a simple algebraic solution for quartic equations in general. You may need to use numerical methods or software to approximate the solutions.
Similarly, we can solve the second equation:
- x^2 + 3x - 25 = 1 - √6i
Rearranging the equation, we have:
x^2 + 3x - 26 = -√6i
To solve this equation, we'll square both sides:
(x^2 + 3x - 26)^2 = (-√6i)^2 (x^2 + 3x - 26)^2 = -6
Expanding the left side of the equation:
x^4 + 6x^3 - 5x^2 - 102x + 676 = -6
Rearranging and simplifying:
x^4 + 6x^3 - 5x^2 - 102x + 682 = 0
This equation is identical to the one we obtained in equation 1). Hence, the solutions for both equations will be the same.
In


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili