Вопрос задан 03.03.2021 в 18:40. Предмет Алгебра. Спрашивает Белоусов Дима.

Дана геометрическая прогрессия bn, знаменатель которой равен 4, b1 = 3/4. Найдите сумму первых 4 её

членов.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тихая Света.
B2=3/4 ×4=3
b3=3/4×16=12
b4=3/4×64=48
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения суммы первых четырех членов геометрической прогрессии нужно воспользоваться формулой:

S₄ = b₁ * (1 - q⁴) / (1 - q),

где S₄ - сумма первых четырех членов, b₁ - первый член прогрессии, q - знаменатель прогрессии.

В данном случае b₁ = 3/4 и q = 4.

Подставим значения в формулу:

S₄ = (3/4) * (1 - 4⁴) / (1 - 4).

Упростим числитель:

S₄ = (3/4) * (1 - 256) / (1 - 4).

Вычислим числитель:

S₄ = (3/4) * (-255) / (1 - 4).

Упростим дробь в знаменателе:

S₄ = (3/4) * (-255) / (-3).

Сократим дробь:

S₄ = (3/4) * 85.

Умножим числитель:

S₄ = 255/4.

Итак, сумма первых четырех членов геометрической прогрессии равна 255/4 или 63.75.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос