Вопрос задан 02.03.2021 в 23:17. Предмет Алгебра. Спрашивает Добрынина Катя.

Произведение двух натуральных чисел, одно из которых на 4 больше другого, равно 12. а)2 и 6; б) 3

и 7; в) 5 и 9.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Андрющенко Руслан.
Пусть х- первое число, тогда второе (х+4). Так как произведение = 12.Составим уравнение: х(х+4)=12, то есть х ²+4х-12=0
Д=4 ²- 4*(-12)=16+48=64, корень из 64=8
х1= -4+8/2=2
х2= -4-8/2=6
Ответ 2 и 6

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить данную задачу, мы должны найти два натуральных числа, которые удовлетворяют двум условиям: одно из чисел на 4 больше другого, и их произведение равно 12.

Рассмотрим варианты:

а) Числа 2 и 6: 2 увеличенное на 4 даёт 6, и их произведение равно 2 * 6 = 12. Условия выполняются, значит, это подходящий вариант.

б) Числа 3 и 7: 3 увеличенное на 4 даёт 7, но их произведение равно 3 * 7 = 21, а не 12. Условия не выполняются.

в) Числа 5 и 9: 5 увеличенное на 4 даёт 9, но их произведение равно 5 * 9 = 45, а не 12. Условия не выполняются.

Таким образом, единственным подходящим вариантом является а) 2 и 6.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос