
Log3+x (3)+log3+x (x^2)<=log3+x (x+4).


Ответы на вопрос

ОДЗ :
1) x > 0
2) x + 4 > 0 ⇒ x > - 4
3) 3 + x > 0 ⇒ x > - 3
4) 3 + x ≠ 1 ⇒ x ≠ - 2
Окончательно : x > 0
+ - +
___________(- 3)___________[1 1/3]___________
////////////////////////////////
x ∈ ( - 3 ; 1 1/3]
С учётом, ОДЗ окончательный ответ : x ∈ (0 ; 1 1/3]



To solve the given inequality:
log3+x (3) + log3+x (x^2) <= log3+x (x+4)
We can use the properties of logarithms to simplify the expression.
- Combine the logarithms using the product rule of logarithms:
log3+x (3 * x^2) <= log3+x (x+4)
- Apply the quotient rule of logarithms:
log3+x (3x^2 / (x+4)) <= 0
- Convert the logarithmic inequality to an exponential inequality:
3x^2 / (x+4) <= (3+x)^0
Note: (3+x)^0 simplifies to 1, so the inequality becomes:
3x^2 / (x+4) <= 1
- Multiply both sides by (x+4) to eliminate the denominator (assuming x + 4 > 0):
3x^2 <= x+4
- Rearrange the equation to get a quadratic inequality:
3x^2 - x - 4 <= 0
- Solve the quadratic inequality by factoring or using the quadratic formula:
3x^2 - x - 4 = (3x + 4)(x - 1) <= 0
To find the values of x that satisfy the inequality, we need to determine when the expression (3x + 4)(x - 1) is less than or equal to zero.
- Set each factor equal to zero and solve:
3x + 4 = 0 => x = -4/3 x - 1 = 0 => x = 1
- Plot these points on a number line:
-----------o---o-----------
-4/3 1
- Test intervals:
Test a value in the interval (-∞, -4/3): Let x = -2 Substitute this value into the inequality: (3(-2) + 4)(-2 - 1) = (-2)(-3) = 6 > 0 The inequality is not satisfied in this interval.
Test a value in the interval (-4/3, 1): Let x = 0 Substitute this value into the inequality: (3(0) + 4)(0 - 1) = (4)(-1) = -4 <= 0 The inequality is satisfied in this interval.
Test a value in the interval (1, +∞): Let x = 2 Substitute this value into the inequality: (3(2) + 4)(2 - 1) = (10)(1) = 10 > 0 The inequality is not satisfied in this interval.
- Determine the solution:
The solution to the inequality 3x^2 - x - 4 <= 0 is x ∈ (-4/3, 1].
Note: It's essential to double-check the solution by plugging in values from the intervals to ensure the inequality holds true.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili