Найдите log25 (162), если log5 (2)=a, log3 (5)=b
Ответы на вопрос
To find the value of log25(162), we can use the change of base formula for logarithms. The change of base formula states that logₐ(b) = logₓ(b) / logₓ(a), where x can be any base.
Given that log₅(2) = a and log₃(5) = b, let's express log25(162) in terms of a and b:
log25(162) = log₅(162) / log₅(25)
To express log₅(162) in terms of a and b, we need to find a relation between 162 and 5 using the given logarithmic identities.
Since log₅(2) = a, we can rewrite it as:
5^a = 2
Similarly, since log₃(5) = b, we can rewrite it as:
3^b = 5
Now, let's find the relation between 162 and 5:
162 = 2 * 3^4
Using the above relation, we can rewrite log₅(162) as:
log₅(162) = log₅(2 * 3^4)
Applying logarithmic properties, we can split it into two logarithms:
log₅(162) = log₅(2) + log₅(3^4)
Since log₅(2) = a, we have:
log₅(162) = a + log₅(3^4)
Since 3^4 = (3^2)^2 = 9^2, we can rewrite it as:
log₅(162) = a + log₅(9^2)
Using the property logₐ(b^c) = c * logₐ(b), we can rewrite it as:
log₅(162) = a + 2 * log₅(9)
Since 9 = 3^2, we can rewrite it further:
log₅(162) = a + 2 * log₅(3^2)
Using logarithmic properties, we can bring the exponent out as a coefficient:
log₅(162) = a + 2 * 2 * log₅(3)
Since log₃(5) = b, we can replace log₅(3) with b:
log₅(162) = a + 2 * 2 * b
Simplifying further, we have:
log₅(162) = a + 4b
Now, let's substitute the values of a and b:
log₅(162) = a + 4b log₅(162) = a + 4 * log₃(5)
Since log₃(5) = b, we can rewrite it as:
log₅(162) = a + 4b log₅(162) = a + 4 * b
Therefore, log25(162) can be expressed as a + 4b.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
