
(2cosx+1) (3tgx+1)= 0


Ответы на вопрос

3tgx + 1 = 0
2cosx = -1
3tgx = -1
cosx = -0,5
tgx = -1/3
cosx = -0,5
x=arccos(-0,5) + 2pk
x = -arccos(-0,5) + 2pk
x1=2p/3 + 2pk
x2= -2p/3 + 2pk



To solve the equation (2cos(x) + 1)(3tan(x) + 1) = 0, we need to find the values of x that satisfy this equation. To do that, we can set each factor equal to zero and solve for x separately.
First factor: 2cos(x) + 1 = 0
Subtracting 1 from both sides: 2cos(x) = -1
Dividing by 2: cos(x) = -1/2
This means that x can take on values where the cosine of x is equal to -1/2. Looking at the unit circle, we find that the cosine is equal to -1/2 at two angles: 2π/3 and 4π/3. So, x can be:
x = 2π/3 + 2πn (where n is an integer) x = 4π/3 + 2πn (where n is an integer)
Second factor: 3tan(x) + 1 = 0
Subtracting 1 from both sides: 3tan(x) = -1
Dividing by 3: tan(x) = -1/3
This means that x can take on values where the tangent of x is equal to -1/3. The tangent function repeats every π, so we can find one angle and then add integer multiples of π to get all solutions. Using the arctan function, we find that one solution is approximately -0.32175 radians or -18.43 degrees. So, x can be:
x ≈ -0.32175 + πn (where n is an integer)
Therefore, the solutions to the equation (2cos(x) + 1)(3tan(x) + 1) = 0 are:
x = 2π/3 + 2πn (where n is an integer) x = 4π/3 + 2πn (where n is an integer) x ≈ -0.32175 + πn (where n is an integer)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili