
Вопрос задан 15.02.2021 в 00:52.
Предмет Алгебра.
Спрашивает Клыкова Арина.
Доказать что если 4а-5b > 7a-8b. то а


Ответы на вопрос

Отвечает Карпов Вова.
Переносим "а" вправо, а "б" влево:
-3а>-3б
-а>-б
а<б
-3а>-3б
-а>-б
а<б



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для доказательства данного утверждения нам нужно показать, что если неравенство 4a - 5b > 7a - 8b выполняется, то a < b. Давайте начнем:
- Предположим, что неравенство 4a - 5b > 7a - 8b верно.
- Перенесем все термины, содержащие a, на одну сторону неравенства, а все термины, содержащие b, на другую сторону. Это даст нам: 4a - 7a > 5b - 8b.
- Упростим левую и правую части неравенства: -3a > -3b.
- Разделим обе части неравенства на -3, но в этом случае направление неравенства изменится: a < b.
Таким образом, мы доказали, что если 4a - 5b > 7a - 8b, то a < b.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili